On the restricted almost unbiased Liu estimator in the logistic regression model
نویسندگان
چکیده
منابع مشابه
On almost unbiased ridge logistic estimator for the logistic regression model
Schaefer et al. [15] proposed a ridge logistic estimator in logistic regression model. In this paper a new estimator based on the ridge logistic estimator is introduced in logistic regression model and we call it as almost unbiased ridge logistic estimator. The performance of the new estimator over the ridge logistic estimator and the maximum likelihood estimator in scalar mean squared error cr...
متن کاملOn the Weighted Mixed Almost Unbiased Ridge Estimator in Stochastic Restricted Linear Regression
We introduce the weighted mixed almost unbiased ridge estimator (WMAURE) based on the weighted mixed estimator (WME) (Trenkler and Toutenburg 1990) and the almost unbiased ridge estimator (AURE) (Akdeniz and Erol 2003) in linear regression model. We discuss superiorities of the new estimator under the quadratic bias (QB) and the mean square error matrix (MSEM) criteria. Additionally, we give a ...
متن کاملJackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کاملPreliminary test almost unbiased ridge estimator in a linear regression model with multivariate Student-t errors
In this paper, the preliminary test almost unbiased ridge estimators of the regression coefficients based on the conflicting Wald (W), Likelihood ratio (LR) and Lagrangian multiplier (LM) tests in a multiple regression model with multivariate Student-t errors are introduced when it is suspected that the regression coefficients may be restricted to a subspace. The bias and quadratic risks of the...
متن کاملOn the Liu and Almost Unbiased Liu Estimators in the Presence of Multicollinearity with Heteroscedastic or Correlated Errors
This paper introduces a new biased estimator, namely, almost unbiased Liu estimator (AULE) of β for the multiple linear regression model with heteroscedastics and/or correlated errors and suffers from the problem of multicollinearity. The properties of the proposed estimator is discussed and the performance over the generalized least squares (GLS) estimator, ordinary ridge regression (ORR) esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics - Theory and Methods
سال: 2017
ISSN: 0361-0926,1532-415X
DOI: 10.1080/03610926.2017.1376082